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1. Introduction

A lot of research has been carried out in multiobjective optimization problems
[1,3,7,8,13]. Corley [3] has given optimality conditions for convex and nonvon-
vex multi-objective problems in terms of Clarke derivative. Luc [7] also gives
optimality conditions when the data are upper semidifferentiable. Taa [13] stud-
ied optimality conditions in terms of Lagrange–Fritz–John and Lagrange–Karush-
Kuhn–Tucker multipliers for nonsmooth and nonconvex vector mathematical pro-
gramming with the existence of the Hadamard directional derivatives of objective
and constraint functions.
In this paper, we are concerned with the vector optimization problem

�P� �

{
Y +−Minimize f �x�−g�x�

subject to �h�x�−k�x�∈−Z+

where X, Y and Z are Banach spaces, f, g: X→ Y and h, k: X→Z are convex, proper
and lower semi-continuous mappings and Y +⊂Y and Z+⊂Z are pointed,
convex and closed cones with nonempty interiors.
In [4], Hiriart Urruty studied a special case of (P);{

Min f �x�−g�x�
subject to: x∈X
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where f and g are convex, proper and lower semi-continuous functions. He proved
that sufficient optimality conditions can be derived either from the Diff-Max no-
tion, which means that each point of the effective domain is a local maximum for
the subdifferential according to the inclusion relation, or from the �-subdifferential.
In this paper, we somewhat extend Hiriart Urruty’s findings by seeing if they

are valid for larger class of problems with D.C. data. To show up sufficient optim-
ality conditions for the vector optimization problem (P), our approach consists of
using extensions of both the Diff-Max notion and the �-subdifferential, for convex
mappings.
The outline of the paper is as follows: preliminary results are described in Sec-

tion 2; the main result is given in Section 3; Sections 4 is reserved for an application
to vector fractional mathematical programming in a ordered Hilbert spaces.

2. Preliminaries

Throughout this paper, X, Y, Z and W are Banach spaces whose topological dual
spaces are X∗, Y ∗, Z∗ and W ∗ respectively. Let Y +⊂Y (resp. Z+⊂Z) be
a pointed �Y +∩−Y +=�0��, convex and closed cones with nonempty interior
introducing a partial order in Y ( resp. in Z) defined by

y1�Y y2⇔y2∈y1+Y +�

Let S be a nonempty subset of Y �ȳ∈S is said to be a Pareto (resp. a weak Pareto)
minimal vector of S with respect to Y + if

S⊂ ȳ+�Y \−Y +�∪�0�
(resp. S⊂ ȳ+Y \−IntY +�, where Int denotes the topological interior. The
negative polar cone �Y +� of Y + is defined as

�Y +�=�y∗ ∈Y ∗ ��y∗�y��0 for ally∈Y +��

where ����� is the dual pairs.
Given a mapping f �X→Y , the epigraph of � is defined by

epi�f �=��x�y�∈X×Y �y∈f �x�+Y +��

Since convexity plays an important role in the following investigations, recall the
concept of cone-convex mappings.
The mapping f is said to be Y +-convex if for every �∈ �0�1� and x1�x2∈X

�f�x1�+�1−��f �x2�∈f ��x1+�1−��x2�+Y +�

DEFINITION 2.1. A mapping h: X→Y is said to be Y +-D.C. if there exists two
Y +-convex mappings f and g such that:

h�x�=f �x�−g�x� ∀x∈X�
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Let us recall the definition of lower semi-continuity of mappings introduced by
Penot and Thèra [11].

DEFINITION 2.2. [11] A mapping f �X→Y is said to be lower semicontinuous
(l.s.c) at x̄∈X, if for any neighborhood V of zero and for any b∈Y satisfying
b�Y f �x̄�, there exists a neighborhood U of x̄ in X such that

f �U�⊂b+V+�Y +∪�+����

In [16], Valadier introduced the subdifferential of Y +-convex mappings.

DEFINITION 2.3. [16] Let f �X→Y ∪�+�� be a Y +-convex mapping, the
subdifferential of f at x̄∈domf is given by

"vf �x̄�=�T ∈L�X�Y � �T �h��Y f �x̄+h�−f �x̄� ∀h∈X��

REMARK 2.1. 1. Let f �X→Y ∪�+�� be a Y +-convex mapping. If f is also
continuous at x̄; then

"vf �x̄� �=∅�
(2.) When f is a convex function, "vf �x̄� (respectively, the lower semicontinuity)
reduces to the well known subdifferential

"f �x̄�="A�Cf �x̄�=�x∗ ∈X∗ �f �x�−f �x̄���x∗�x− x̄� for all x∈X��
(respectively. the usual lower semicontinuity).

For all the sequel, we shall need the following definition.

DEFINITION 2.4. [12] Let f �X→Y ∪�+�� be a Y +-convex mapping. f is
said to be subdifferentialy regular at x̄ if for all y∗ ∈�−Y +� one has

y∗ "vf �x̄�="�y∗1 f ��x̄��
We denote by

F =�x∈X �h�x�−k�x�∈−Z+�� (1)

the feasible set of (P). Consider the set

�f−g��F� �=�f �x�−g�x� �x∈F��
x̄∈F is an efficient (resp. weak efficient) solution of (P1) if �f−g��x̄� is a Pareto
(resp. weak Pareto) minimal vector of �f−g��F�.
x̄∈F is a local efficient (resp. weak local efficient) solution of (P) if there

exists a neighborhood V of x̄ such that �f−g��x̄� is a Pareto (resp. weak Pareto)
minimal vector of �f−g��F ∩V �.
The following result has been proved by Attouch and Brezis [2] in the Banach

space setting and by Rodregues and Simons [13] in the case of the Frechet space.
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THEOREM 2.1. (2). Assume that *1�*2 �X→�∪�+�� are convex, lower
semicontinuous and proper and that �+�dom�*1�−dom�*2�� is closed vector
subspace of X. Then

"�*1+*2��x�="*1�x�+"*2�x��

3. Sufficient optimality conditions

In this section, we conserve the notations previously given and we give optimal-
ity conditions for (P) in terms of Lagrange–Fritz–John multipliers. There are two
different approaches.

3.1. SUFFICIENT OPTIMALITY CONDITIONS VIA THE DIFF-MAX NOTION

A concept already announced in the Introduction is now formally defined.

DEFINITION 3.1. Let f �X→Y ∪�+�� be a Y +-convex mapping and x̄∈
domf . f is said to be Diff-Max at x̄ if there exists a neighborhood U of x̄ such
that, for every x∈U ; we have

"vf �x�⊂"vf �x̄��

Note that a similar definition was given by Michelot [9] when Y =�.

EXAMPLE 3.1. When Y is a Lattice space and f �X→Y ∪�+�� is an Y +-
convex mapping defined by

f �x�= n
max
i=1

��li�x�+bi�

where li∈L�X�Y � and bi∈Y for all i∈�1�2�����n��We have

"vf �x�=co�li � i∈ I�x��� withI�x� �=�i �f �x�=�li�x�+bi��

It is easy to see that f is a Diff-Max mapping.

EXAMPLE 3.2. Let �·� be an arbitrary norm of X and let f �X→�×� such
that

f �x� �=��x���x�� for allx∈X�
On the one hand, direct calculus yields that f is�2

+-convex and that

"f �0�=�∗
X×�∗

X� (2)
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On the other hand, observing that f is 1-Lipschitz, one has

"f �x�⊂�∗
X×�∗

X� (3)

Then, combining (2) and (3), we obtain

"f �x�⊂"f �0� for all x∈X�
Consequently, f is Diff-Max at 0.

We come now on to the theorem of this section.

THEOREM 3.1. Let x̄∈F . Assume that g and k are Diff-Max at x̄. If in addition,
there exist y∗1 ∈�−Y +�\�0� and y∗2 ∈�−Z+� such that y∗2�h�x̄�−k�x̄��=0 and

y∗1 "vg�x̄�+y∗2 "vk�x̄�∈"�y∗1 f+y∗2 h��x̄�� (4)

Then x̄ is a local weak minimal solution of (P).
Proof. Let x̄∈F . Since g and k are Diff-Max at x̄ there exists a neighborhood

U of x̄ such that

"vg�x�⊂"vg�x̄� and "vk�x�⊂"vk�x̄�

for every x∈U .
Let x∈U and consider T ∗ ∈"vg�x� and L∗ ∈"vk�x�. By definition,

g�y��g�x�+�T ∗�y−x� and k�y��k�x�+�L∗�y−x� ∀y∈X�
If we fix y= x̄, we get

g�x̄�g�x�+�T ∗�x̄−x� and k�x̄��k�x�+�L∗�x̄−x�� (5)

Moreover, by assumption there exist y∗1 ∈�−Y +�\�0� and y∗2 ∈�−Z+� such that

y∗2 ∗h�x̄−k�x̄��=0 (6)

and

y∗1 T ∗+y∗2 L∗ ∈"�y∗1 f+y∗2 h��x̄��
Which implies

y∗1 f �x�+y∗2 h�x��y∗1 f �x̄�+y∗2 h�x̄�+�y∗1 T ∗+y∗2 L∗�x− x̄�� (7)

for all x∈F ∩U .
Combining (5), (6) and (7) yields

y∗1 �f �x�−f �x̄��−y∗1 �g�x�−g�x̄��+y∗2 �h�x�−k�x���0�
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Since h�x�−k�x�∈−Z+ and y∗2 ∈�−Z+�, it follows that

y∗2 �h�x�−k�x���0�

Consequently,

y∗1 ��f �x�−f �x̄��−�g�x�−g�x̄����0 ∀x∈U ∩F �
By the fact that y∗1 ∈�−Y +�\�0�, if follows that x̄ is a local weak minimal solution
of (P). The proof is thus complete. �

COROLLARY 3.2. Let x̄∈F . Suppose that g and k are Diff-Max and subdiffer-
entialy regular at x̄. If in addition, there exist y∗1 ∈�−Y +�\�0� and y∗2 ∈�−Z+�

such that y∗2�h�x̄�−k�x̄��=0 and

"�y∗1 g��x̄+"�y∗2 k��x̄�∈"�y∗1 f+y∗2 h��x̄��
Then x̄ is a local weak minimal solution of (P).

Let A be a continuous linear operator from X into W and C be a nonempty
closed convex subset of X. With few and simple computations, we can formulate
the necessary optimality condition for the problem

�P1� �



Y +−Minimizef �x�−g�x�

x∈C
subject to: Ax=b
h�x�−k�x�∈−Z+

Using Theorem 3.1, we deduce the following result.

THEOREM 3.3. Let x̄∈F . Suppose that g and k are Diff-Max at x̄ and the range
of A is closed: If in addition, there exist y∗1 ∈�−Y +�\�0� and y∗2 ∈�−Z+� such
that y∗2�h�x̄�−k�x̄��=0 and

y∗1 "vg�x̄�+y∗2 "vk�x̄�∈"�y∗1 f ��x̄�+"�y∗2 h��x̄�+NC�x̄�+rang�A∗��

Then x̄ is a local weak minimal solution of (P1).
Proof. Since the range of A is closed, by Lemma 2.4 (i) of Jeyakumar and

Wolkowicz [6], we have NE�x̄�=rang�A∗�. By the fact that

"�y∗1 f ��x̄�+"�y∗2 h��x̄�+"2C�x̄�+"2E�x̄�⊂"�y∗1 f+y∗2 h+2C⊂E��x̄��

the proof is clear. �

Similarly, when Y =�p and Z=�m, we deduce the following results.



SUFFICIENT OPTIMALITY CONDITION 61

COROLLARY 3.4. Let x̄∈F . Suppose that gi and kj are Diff-Max at x̄ for
i=1�����p and j=1�����m and the range of A is closed. If in addition, there
exist �=��1������p�∈�p

+\�0�����0� and 5=�51����5m�∈�m
+ such that

5j�hj�x̄�=kj�x̄��=0 j=1�����p

and

p∑
i=1

�i"gi�x̄�+
m∑
j=1

5j"kj�x̄�∈
p∑
i=1

�i"fi�x̄�+
m∑
j=1

5j"hj�x̄�+NC�x̄�+rang�A∗��

Then x̄ is a local weak minimal solution of (P1).

Let us recall the following concept introduced by Hiriart-Urruty [4]. Given a
function 6: X→�. 6 is polyhedral (or piecewise affine) convex function if

6�x�=max��a∗
i �x�+di � i=1�����q�

for all x∈X, where a∗
1�����a

∗
q are in X

∗ and d1�����dq are real numbers.

COROLLARY 3.5. (15) Let x̄∈F . Suppose that gi and kj are polyhedrals, i=
1�����p and j=1�����m and the range of A is closed: If in addition, there exist
�=��1������p�∈�P

+\�0�����0� and 5=�51�����5m�∈�m
+ such that

5j�hj�x̄�−kj�x̄��=0 j=1�����p

and

p∑
i=1

�i"gi�x̄�+
m∑
j=1

5j"kj�x̄�∈
p∑
i=1

�i"fi�x̄�+
m∑
j=1

5j"hj�x̄�+NC�x̄�+rang�A∗��

Then x̄ is a local weak minimal solution of (P1).
Proof. From Hiriart-Urruty [4], since gi and kj are polyhedral functions, there

exists a neighborhood U of x̄ such that

"gi�x�⊂"gi�x̄� and "kj�x�⊂kj�x̄�

for all x∈U . Thus, gi and hj are Diff-Max functions at x̄ for all i�j. Using
Corollary 3.4, the proof is completed. �
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3.2. SUFFICIENT OPTIMALITY CONDITIONS VIA THE VECTOR
�-SUBDIFERENTIAL

Let �∈ int�Y +�. By analogy to the scalar case, the vector �-subdifferential of f at
x̄∈X is defined by

"v�f �x̄�=�T ∈L�X�Y � �T �h�−��Y f �x̄+h�−f �x̄� ∀h∈X��
The particular case �=0, corresponds to "vf �x̄�.
When Y =� and �∈�∗

+, "
v
�f �x̄� reduces to the well known �-subdifferential

"�f �x̄�=�x∗ ∈X∗ �f �x�−f �x̄���x∗�x− x̄�−� for all x∈X��
We will need the following result due to J. B. Hiriart-Urruty, M. Moussaoui,
A. Seeger and M. Volle [6].

THEOREM 3.6. Suppose that *1�*2 �X→�∪�+�� are convex, proper and
lower semicontinuous and x̄∈dom�*1�∩dom�*2�. Then, for all 8>0, one has

"8�*1+*2��x̄�=cl


 ⋂

��0�5�0
�+5=8

"�*1�x̄�+"5*2�x̄�


�

where “cl” stands for topological closure operation with respect to weak star
topology :�X∗�X�.

THEOREM 3.7. Let x̄∈F . Assume that there exist y∗1 ∈�−Y +�\�0� and y∗2 ∈
�−Z+� such that

y∗2�h�x̄�−k�x̄��=0 (8)

and for all ��5∈�∗
+,

cl

( ⋂
��0�5�0

"��y
∗
1 g��x̄�+"5�y

∗
2 k��x̄�

)
⊂"�+5�y

∗
1 f+y∗2 h��x̄��

Then x̄ is a local weak minimal solution of (P).
Proof. Using Lemma 3.6, we get

cl

( ⋂
��0�5�0

"��y
∗
1 g��x̄�+"5�y

∗
2 k��x̄�

)
="�+5�y

∗
1 g+y∗2 k��x̄��

Let t∗ ∈"�+5�y
∗
1 g+y∗2 k��x̄�. By definition, for all and x∈X

−�t∗�x̄−x�+�+5��y∗1 f+y∗2 h��x̄�−�y∗1 g+y∗2 k��x�� (9)
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By assumption, for all ��5∈�∗
+ and x∈X

−�t∗�x̄−x�+�+5��y∗1 f+y∗2 h��x̄�−�y∗1 f+y∗2 h��x�� (10)

Since (9) implies (10) for all ��5∈�∗
+ and x∈X, one gets

y∗1 �f �x�−f �x̄��−y∗1 �g�x�−g�x̄��+y∗2 �h�x�−
k�x��−y∗2�h�x̄�−k�x̄���0� (11)

Since h�x�−k�x�∈−Z+ and y∗2 ∈�−Z+�, one has

y∗2 �h�x�−k�x���0� (12)

Combining (8), (11) and (12) we obtain

y∗1 ��f �x�−f �x̄��−�g�x�−g�x̄����0 ∀x∈F �

By the fact that y∗1 ∈�−Y +�\�0�, if follows that x̄ is a weak minimal solution of
(P).
The proof is thus complete. �

Let ;∈ int�Y +� and <∈ int�Z+�.

COROLLARY 3.8. Let x̄∈F . Suppose that g and k are subdifferentialy regular
at x̄. If in addition, there exist y∗1 ∈�−Y +�\�0� and y∗2 ∈�−Z+� such that
�+�dom�y∗1 g�−dom�y∗2 k�� is closed vector subspace ofX�y∗2�h�x̄�−k�x̄��=0
and

cl


 ⋂

�=y∗1;+y∗2<
y∗1 "v;g�x̄�+y∗2 "v<k�x̄�


⊂"��y

∗
1 f+y∗2 h��x̄��

Then x̄ is a local weak minimal solution of (P).
Proof. Since g and k are subdifferentialy regular at x̄, we have that

y∗1 "v;g�x̄�="21�y
∗
1 g��x̄� and y∗2 "v<k�x̄�="22�y

∗
2 k��x̄�

where 21=y∗1 ; and 22=y∗2 <. Consequently,

y∗1 "v;g�x̄�+y∗2 "v<�x̄�="21�y
∗
1 g��x̄�+"22�y

∗
2 k��x̄�� (13)

Combining (13) and Theorem 3.7, the proof is finished. �
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4. Application

In this section, we give an application to vector fractional mathematical program-
ming. Consider H as a separable Hilbert space ordered by a closed convex cone

H+=�x∈X/�ei�x��0 for all i�

with �ei�i being an orthogonal base. Let f �X→H+�g �X→H+; be given
H+-convex and lower semicontinuous mappings such that gi�x�=�ei�g�x�� �=0.
We denote by @ the mapping defined as follows

@�x� �= f �x�

g�x�
=
(
f1�x�

g1�x�
�����

fi�x�

gi�x�
����

)
�

We suppose that there exists x0∈X such that @�x0�∈H . Under these assump-
tions, we investigate the vector optimization problem

�PF � �




H+ −Minimize@�x�
x∈C�

subject to: Ax=b
h�x�−k�x�∈−Z+�

where C�A�h and k are as in problem (P1).
We will need the following lemma.

LEMMA 4.1. Let x̄ be a feasible point of problem (PF ). x̄ is a local weak minimal
solution of (PF ) if and only if x̄ is a local weak minimal solution of the following
problem


H+−minimize�f1�x�−@1�x̄�g1�x������fi�x�−@i�x̄�gi�x������

x∈C�
subject to � Ax=b�
h�x�−k�x�∈−Z+

where @i�x̄�= fi�x̄�

gi�x̄�
.

Proof. Let x̄ be a local weak minimal solution of (PF ). It is easy to see that
@�x̄�∈H . If there exists x1∈ x̄+�X such that x1∈C�Ax1=b�h�x1�−k�x1�∈
−Z+ and

�fi�x1�−@i�x̄�gi�x1��−�fi�x̄�−@i�x̄�gi�x̄��∈−Int�H+��

Since fi�x̄�−@i�x̄�gi�x̄�=0, one has

fi�x1�

gi�x1�
− fi�x̄�

gi�x̄�
∈−Int�H+��

which contradicts the fact that x̄ is a local weak minimal solution of (PF ).
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The converse implication can be proved in the similar way. The proof is thus
completed. �

Using Theorem 3.1 and Lemma 4.1, we have the following result.

THEOREM 4.2. Let x̄∈F such that @�x̄�∈H . Assume that g and k are Diff-Max
at x̄. If in addition, there exist y∗ ∈H+\�0� and z∗ ∈�−Z+� such that

z∗�h�x̄�−k�x̄��=0

and

�∑
i=1

@i�x̄�y
∗
i "gi�x̄�+z∗ "k�ū�∈"�y∗ f+z∗ h+2C∩E��x̄��

Then x̄ x is a local weak minimal solution of (PF ).
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